# Introduction to Quantum Computing 

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Microsoft
www.artbyphysicistkittyyeung.com
Э @KittyArtPhysics
(0) @artbyphysicistkittyyeung

May 10, 2020
Hackaday, session 7

## Class structure

－Comics on Hackaday－Introduction to Quantum
Computing every Wed \＆Sun
－ 30 mins every Sun，one concept（theory， hardware，programming），Q\＆A
－Contribute to Q\＃documentation http：／／docs．microsoft．com／quantum
－Coding through Quantum Katas
https：／／github．com／Microsoft／QuantumKatas／
－Discuss in Hackaday project comments throughout the week
－Take notes


## Certificate 1

- Complete any one quantum katas
- Take a screenshot or photo
- Post on Twitter or LinkedIn
- Twitter: @KittyArtPhysics @MSFTQuantum @QSharpCommunity \#QSharp \#QuantumComputing \#comics \#physics
- LinkedIn: @Kitty Y. M Yeung \#MSFTQuantum \#QSharp \#QuantumComputing \#comics \#physics

- Deutsch's: determines if a function $f(x)$ is Balanced $(f(0) \neq f(1)$, which is 1-to-1) or

$$
\text { Constant }(f(0)=f(1), \text { which is 2-to-1) }
$$

- Deutsch-Jozsa: a general case of Deutsch's algorithm for n-qubits
- Grover's: search for an item in an unordered list


## Quantum

 Algorithms- Simon's: query complexity, solves the problem exponentially faster than any deterministic or probabilistic classical algorithm, finds repeats in a list
- Shor's: given an integer N , find its prime factors

Can you come up with more useful algorithms?

- http://quantumalgorithmzoo.org/


## Quantum Oracle



- An oracle was usually a priest or a priestess through whom the gods were supposed to speak or prophesize.
- An oracle is a person or agency considered to provide wise and insightful counsel or prophetic predictions or precognition of the future, inspired by the gods. As such it is a form of divination.
- An oracle is a "black box" operation that is used as input to another algorithm
- represent classical functions which return real numbers instead of only a single bit
- quantum operations which implement certain classical functions


This construction is not possible for a quantum algorithm, as $f(x)$ can not guarantee to be a reversible.)
In many quantum algorithms, we put both the inputs and the output through a black box - a quantum oracle. The classical function $f(x)$ is used to construct the black box.


## Oracles



| $x$ | $y=f(x)=x \% 4$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 0 |
| 5 | 1 |
| 6 | 2 |
| 7 | 3 |

Cannot exist for circuit on the left

## Oracles



| $x$ | $y=f(x)=x \% 4$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 0 |
| 5 | 1 |
| 6 | 2 |
| 7 | 3 |

for $x=3=|011\rangle$, with $y$ initialized to $0=|000\rangle$

$U(|011\rangle,|000\rangle)=(|011\rangle,|000\rangle \oplus f(|011\rangle)=(|011\rangle,|000\rangle \oplus|011\rangle)=(|011\rangle,|011\rangle)$

$U(|111\rangle,|000\rangle)=(|111\rangle,|000\rangle \oplus f(|111\rangle)=(|111\rangle,|000\rangle \oplus|011\rangle)=(|111\rangle,|011\rangle)$
for $x=7=|111\rangle$, with $y$ initialized to $0=|000\rangle$

$U(|111\rangle,|000\rangle)=(|111\rangle,|000\rangle \oplus f(|111\rangle)=(|111\rangle,|000\rangle \oplus|011\rangle)=(|111\rangle,|011\rangle)$

$U(|111\rangle,|011\rangle)=(|111\rangle,|011\rangle \oplus f(|111\rangle)=(|111\rangle,|011\rangle \oplus|011\rangle)=(|111\rangle,|000\rangle)$

## Oracles



$$
\text { for } x=3=|011\rangle \text {, with } y \text { initialized to } 0=|000\rangle
$$


$U(|011\rangle,|000\rangle)=(|011\rangle,|000\rangle \oplus f(|011\rangle)=(|011\rangle,|000\rangle \oplus|011\rangle)=(|011\rangle,|011\rangle)$

$U(|111\rangle,|000\rangle)=(|111\rangle,|000\rangle \oplus f(|111\rangle)=(|111\rangle,|000\rangle \oplus|011\rangle)=(|111\rangle,|011\rangle)$
for $x=7=|111\rangle$, with $y$ initialized to $0=|000\rangle$

$U(|111\rangle,|000\rangle)=(|111\rangle,|000\rangle \oplus f(|111\rangle)=(|111\rangle,|000\rangle \oplus|011\rangle)=(|111\rangle,|011\rangle)$

$U(|111\rangle,|011\rangle)=(|111\rangle,|011\rangle \oplus f(|111\rangle)=(|111\rangle,|011\rangle \oplus|011\rangle)=(|111\rangle,|000\rangle)$


## Deutsch-Jozsa algorithm



What the Deutsch-Jozsa algorithm does is to find out if $f(x)$ is CONSTANT $(f(x)=0$ or 1 for any $x$ ) or BALANCED (half of the time $f(x)=0$, half of the time $f(x)=1$ ) 。

Classically, we would have to test every output given an input. Here, we only need to run the oracle once and measure the resulting qubits to find out what the nature of $f(x)$ is.

David Deutsch (physicist) - Wikipedia Translate this page https://de.wikipedia.org/wiki/David_Deutsch_(Physiker) v


Richard Jozsa FRS is an Australian mathematician who holds the Leigh Trapnell Chair in Quantum Physics at the University of Cambridge ${ }^{[3]} \mathrm{He}$ is a Fellow of King's College, Cambridge where his research investigates quantum information science. A pioneer of his field, he is the co-author of the Deutsch-Jozsa algorithm and one of the co-inventors of quantum teleportation.



CONTROLQUBIT:
YOU STAY THE SAME IF I'M |O>\% YOU CHANGE IF I ${ }^{9} M \mid I>$ 。

CNOT|OO> $=\mid 00>$ CNOT|01> $=|01\rangle$ CNOT|10>=|11> CNOT|11>=|10>

The controlled-not gate manipulates the target qubit based on the state of the control qubit.

 OKAY~


21 $H|1>=|->=(|0\rangle-|1\rangle) / \sqrt{ } 2$

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

| In | Out |
| :---: | :---: |
| $\|00\rangle$ | $(\|00\rangle+\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{00}\right\rangle$ |
| $\|01\rangle$ | $(\|01\rangle+\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{01}\right\rangle$ |
| $\|10\rangle$ | $(\|00\rangle-\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{10}\right\rangle$ |
| $\|11\rangle$ | $(\|01\rangle-\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{11}\right\rangle$ |



What the Deutsch-Jozsa algorithm does is to find out if $f(x)$ is CONSTANT ( $f(x)=0$ or 1 for any $x$ ) or BALANCED (half of the time $f(x)=0$, half of the time $f(x)=1$ ) 。

Classically, we would have to test every output given an input. Here, we only need to run the oracle once and measure the resulting qubits to find out what the nature of $f(x)$ is.

But intuitively, what is this algorithm really doing?


4(a)。 If nothing happens to the input qubits, they come out unchanged.
The H gates put the superpositions back to $\left|0000_{000}\right\rangle_{0}$ Hence, if $\left|000_{000}\right\rangle$ is the state measured after the oracle, $f(x)$ must be constant.

4(b). If entanglement happens the negative sign gets carried over. Half of the time there's $\mid 000$ ooo $>$, half of the time there's $-\left|000_{0.00}\right\rangle_{0}$ They destructively

> interfere. Thus, if we measure a |1> for any qubit at all, $f(x)$ must be balanced, since there's zero probability of getting $\left|000_{0.0\rangle}\right\rangle$ after the oracle.

## Is a function balanced or constant?

$$
\left.\begin{array}{ll}
x=0 \longrightarrow f(x)=0 \\
x=1 \longrightarrow f(x)=1 \\
x=0 \longrightarrow
\end{array} \longrightarrow \begin{array}{l}
x=0 \\
x=1
\end{array} \longrightarrow \begin{array}{l}
f(x)=0 \\
f(x)=0 \\
f(x)=1
\end{array}\right)
$$

Balanced

Constant


## Deutsch's algorithm (2-qubit version of Deutsch-Jozsa)



## Deutsch's algorithm

- Go to notes

$x \quad$ Constant $0 \quad f(x)=0$




The two-qubit system has an input $|0\rangle|0\rangle$. After applying X gate on the second qubit, the system changes to $|0\rangle|1\rangle$. Applying $H$ gates on both the qubits brings the state to

Applying the black box (applying $|x\rangle|y\rangle=>|x\rangle|y \oplus f(x)\rangle$ on all the four parts in the superposition):

$$
\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|0 \oplus f(0)\rangle}{\sqrt{2}}\right)-\left(\frac{10\rangle}{\sqrt{2}}\right)\left(\frac{|1 \oplus f(0)\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0 \oplus f(1)\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1 \oplus f(1)\rangle}{\sqrt{2}}\right)
$$

$$
=\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|f(0)\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1 \oplus f(0)\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|f(1)\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1 \oplus f(1)\rangle}{\sqrt{2}}\right)
$$

$$
\text { (because } 0 \oplus f(0)=f(0) \text { and } 0 \oplus f(1)=f(1))
$$

$$
=\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|f(0)\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{\mid \overline{f(0)\rangle}}{\sqrt{2}}\right)+\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{|f(1)\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|\overline{f(1)\rangle}\rangle}{\sqrt{2}}\right)
$$

$$
\text { (because } 1 \oplus f(0)=\overline{f(0)} \text { and } 1 \oplus f(1)=\overline{f(1))}
$$

Let's evaluate the above result if the black box is Constant 0 (i.e $f(0)=0$ and $f(1)=0$ ):

$$
\begin{aligned}
& \left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|\overline{0}\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0|}{\sqrt{2}}\right) \\
= & \left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1|}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1|}{\sqrt{2}}\right) .
\end{aligned}
$$

Refactoring above:

$$
\left(\frac{|0\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right)
$$

$$
\begin{aligned}
& =\left(\frac{|0\rangle}{\sqrt{2}}+\frac{11\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right) . \\
& \text { e on the first qubit: }
\end{aligned}
$$

Now, apply H gate on the first qubit:

$$
|0\rangle \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right) .
$$

We prove that if the given black box is Constant 0 , executing the above circuit and measuring the first qubit will give 0 . But we haven't proven the converse - if we get 0 after measuring the first qubit, does it mean that Constant 0 black box is used? So, let's evaluate eq.(2.2.1) for Constant 1 (i.e $f(0)=1$ and $f(1)=1$ ):

$$
\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|f(0)\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|\bar{f}(0)\rangle}{\sqrt{2}}\right)+\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{|f(1)\rangle}{\sqrt{2}}\right)-\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{\mid \overline{f(1)\rangle}}{\sqrt{2}}\right)
$$

$$
=\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|0|}{\sqrt{2}}\right)\left(\frac{|1|}{\sqrt{2}}\right)+\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{|1|}{\sqrt{2}}\right)-\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{|1|}{\sqrt{2}}\right)
$$

$$
=\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right) .
$$

After refactoring:

$$
\begin{aligned}
\left(\frac{|0\rangle}{\sqrt{2}}\right) & \otimes\left(\frac{|1\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|1\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{11\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1|}{\sqrt{2}}\right) \otimes-\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right) \\
& =-\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Now, apply H gate on the first qubit:

$$
|0\rangle \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right) .
$$

We prove that if the given black box is Constant 0 , executing the above circuit and measuring the first qubit will give 0 . But we haven't proven the converse - if we get 0 after measuring the first qubit, does it mean that Constant 0 black box is used?

So, let's evaluate eq.(2.2.1) for Constant 1 (i.e $f(0)=1$ and $f(1)=1$ ):

$$
\begin{aligned}
& \left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|f(0)\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|\overline{f(0)}\rangle}{\sqrt{2}}\right)+\left(\frac{|1|}{\sqrt{2}}\right)\left(\frac{|f(1)\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{\mid \overline{f(1)\rangle}}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|\overline{1}\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|\overline{1}|}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|0\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|1\rangle}{\sqrt{2}}\right)-\left(\frac{|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle}{\sqrt{2}}\right) .
\end{aligned}
$$

After refactoring:

$$
\begin{aligned}
\left(\frac{|0\rangle}{\sqrt{2}}\right) & \otimes\left(\frac{|1\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right)+\left(\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|1\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|1\rangle}{\sqrt{2}}-\frac{|0\rangle}{\sqrt{2}}\right) \\
& =\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}\right) \otimes-\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right) \\
& =-\left(\frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Applying H gate on the first qubit

$$
-|0\rangle \otimes\left(\frac{|0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}\right)
$$

Here, if we measure the first qubit, it is $100 \%$ certain that we will still get $|0\rangle$, because probability is the square of the amplitude ( -1 in this case). So, we just proved that if the given black box is Constant 1 , executing the above circuit and measuring the first qubit will give 0 .

$$
\begin{aligned}
& \left(\frac{(0)}{\sqrt{2}}+\frac{11}{\sqrt{2}}\right) \otimes\left(\frac{00}{\sqrt{2}}-\frac{11}{\sqrt{2}}\right) \\
& =\left(\frac{(0)}{\sqrt{2}}\right)\left(\frac{(0)}{\sqrt{2}}\right)-\left(\frac{(0)}{\sqrt{2}}\right)\left(\frac{11}{\sqrt{2}}\right)+\left(\frac{11}{\sqrt{2}}\right)\left(\frac{10}{\sqrt{2}}\right)-\left(\frac{(11}{\sqrt{2}}\right)\left(\frac{11}{\sqrt{2}}\right) .
\end{aligned}
$$



## Q\# exercise:

- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas
- Tutorials
https://github.com/microsoft/QuantumKatas/tree/master/tutorials/ExploringDeutschJozsaAlgo rithm
- DeutschJozsaAlgorithm
https://github.com/microsoft/QuantumKatas/tree/master/DeutschJozsaAlgorithm
- Documentation sample
https://github.com/microsoft/Quantum/tree/master/samples/getting-started/simple-algorithms


## Task 2.1. Deutsch-Jozsa Algorithm

## Inputs:

1. the number of qubits $N$ in the input register for the function f
2. a quantum operation which implements the oracle $|x, y\rangle \rightarrow|x, y \oplus f(x)\rangle$, where x is an $N$-qubit input register, y is a 1-qubit answer register, and f is a Boolean function

## Output: true if the function $f$ is constant, or false if the function $f$ is balanced.

```
| %kata T31_DJ_Algorithm_Test
    operation DJ_Algorithm (N : Int, oracle : ((Qubit[], Qubit) => Unit)) : Bool {
    // Create a boolean variable for storing the return value.
    // You'll need to update it later, so it has to be declared as mutable.
    // ...
    // Allocate an array of N qubits for the input register }x\mathrm{ and one qubit for the answer register y.
    using ((x, y) = (Qubit[N], Qubit())) {
        // Newly allocated qubits start in the |0) state.
            // The first step is to prepare the qubits in the required state before calling the oracle.
            // Each qubit of the input register has to be in the /+) state.
            // ...
            // The answer register has to be in the /-) state.
            // ...
            // Apply the oracle to the input register and the answer register.
            // ...
            // Apply a Hadamard gate to each qubit of the input register again.
            // ...
            // Measure each qubit of the input register in the computational basis using the M operation.
            // If any of the measurement results is One, the function implemented by the oracle is balanced.
            // ...
            // Before releasing the qubits make sure they are all in the |0) state.
        }
    // Return the answer.
    // ..
}
```


## Certificate 2

- 1. Who came up with the term "Quantum Oracle"?

- 2. Who is this on page 6 ?

- 3. Who is this on page 26 ?


